전체상품목록 바로가기

본문 바로가기


  • sbbn09033  
  • Handbook of Neurobehavioral Genetics and Phenotyping

    (해외배송 가능상품)
    공급사 바로가기
    기본 정보
    도서명: Handbook of Neurobehavioral Genetics and Phenotyping
    정   가: 335,000원
    판매가: 318,000원
    적립금: 6,360원 (2%)
    저   자: Valter Tucci
    출판사: Wiley-Blackwell
    ISBN  : 9781118540718
    출판일: 2017.02
    판   형: Hardcover
    수량: 수량증가수량감소
    판   수: 1/e
    면   수: 624 page
    해외주문도서: 해외 및 국내 입고 사정에 따라 2~4주 이상 소요될 수 있으며 - 해외주문은 취소 및 반품이 불가합니다.
    배송방법: 택배
    배송비: 2,500원 (30,000원 이상 구매 시 무료)
    구매안내: 네이버페이로 구매할 수 없는 상품입니다.
    무이자할부 안내
    구매방법

    배송주기

    개인결제창을 통한 결제 시 네이버 마일리지 적립 및 사용이 가능합니다.

    수량
    증가 감소
    상품 옵션
    옵션선택

    (최소주문수량 1개 이상 / 최대주문수량 0개 이하)

    사이즈 가이드

    수량을 선택해주세요.

    위 옵션선택 박스를 선택하시면 아래에 상품이 추가됩니다.

    상품 목록
    상품명 상품수 가격
    Handbook of Neurobehavioral Genetics and Phenotyping 수량증가 수량감소 (  6360)
    총 상품금액(수량) : 0 (0개)

    할인가가 적용된 최종 결제예정금액은 주문 시 확인할 수 있습니다.

    이벤트

    상품상세정보

    의학서적전문 "성보의학서적"의 신간의학도서입니다.


    The Handbook of Behavioral Genetics and Phenotyping represents an integrative approach to neurobehavioural genetics; worldwide experts in their field will review all chapters. Advanced overviews of neurobehavioural characteristics will add immense value to the investigation of animal mutants and provide unique information about the genetics and behavioural understanding of animal models, under both normal and pathological conditions. Cross-species comparisons of neurobehavioural phenotypes will pave the way for an evolutionary understanding of behaviour.


    Moreover, while biological sciences are progressing towards a holistic approach to investigate the complexity of organisms (i.e., “systems biology” approach), an integrated analysis of behavioural phenotyping is still lacking. The Handbook of Behavioral Genetics and Phenotyping strengthens the cross-talk within disciplines that investigate the fundamental basis of behaviour and genetics. This will be the first volume in which traditionally distant fields including genomics, behaviour, electrophysiology, neuroeconomics, and computational neuroscience, among others, are evaluated together and simultaneously accounted for during discussions of future perspectives.


    -도서목차-


    List of Contributors xix

    Preface xxv

    1 Genetic Screens in Neurodegeneration 1
    Abraham Acevedo Arozena and Silvia Corrochano

    Introduction 1

    The Genetics of Neurodegenerative Disorders 2

    Neurodegeneration Disease Models 4

    Genetic Approaches to Discover New Genes Related to Neurodegeneration Using Disease Models 5

    Saccharomyces cerevisiae 6

    Caenorhabditis elegans 8

    Drosophila melanogaster 9

    Danio rerio 10

    Mus musculus 11

    Human Cellular Models and Post-mortem Material 14

    The Future 14

    Acknowledgments 15

    References 15

    2 Computational Epigenomics 19
    Mattia Pelizzola

    Background 19

    Profiling and Analyzing the Methylation of Genomic DNA 19

    Experimental Methods 20

    Data Analysis 20

    Array-based Methods 20

    Sequencing-based Methods 20

    Profiling and Analyzing Histone Marks 26

    Experimental Methods 26

    Data Analysis 27

    Issues of Array-based Methods 27

    Issues of NGS-based Methods 27

    Integration with Other Omics Data 31

    Chromatin States 32

    Unraveling the Cross-talk Between Epigenetic Layers 33

    References 33

    3 Behavioral Phenotyping in Zebrafish: The First Models of Alcohol Induced Abnormalities 37
    Robert Gerlai

    Introduction 37

    Alcohol Related Human Disorders: A Growing Unmet Medical Need 37

    Unraveling Alcohol Related Mechanisms: The Importance of Animal Models 38

    Face Validity: The First Step in Modeling a Human Disorder 39

    Acute Effects of Alcohol in Zebrafish: A Range of Behavioral Responses 39

    Chronic Alcohol Exposure Induced Behavioral Responses in Zebrafish 41

    Effects of Embryonic Alcohol Exposure 42

    Behavioral Phenotyping: Are We There Yet? 46

    Assembling the Behavioral Test Battery 49

    Concluding Remarks 50

    References 50

    4 How does Stress Affect Energy Balance? 53
    Maria Razzoli, Cheryl Cero, and Alessandro Bartolomucci

    Introduction 53

    Stress 54

    Energy Balance and Metabolic Disorders 55

    Pro-adipogenic Stress Mediators 57

    Pro-lipolytic Effect of Stress Mediators 57

    How does Stress Affect Energy Balance? 57

    Animal Models of Chronic Stress and their Impact on Energy Balance 58

    Physical and Psychological (non-social) Chronic Stress Models 58

    Mild Chronic Pain Models – Mild Tail Pinch, Foot Shock 58

    Thermal Models – Cold and Heat Stress 64

    Chronic Mild Stress Models: Chronic Mild Stress, Chronic Variable Stress, etc. 64

    Restraint or Immobilization 65

    Chronic Social Stress Models 66

    Social Isolation, Individual Housing 66

    Unstable Social Settings 66

    Visible Burrow System 67

    Intermittent Social Defeat (Resident/Intruder Procedure) 67

    Chronic Psychosocial Stress, Sensory Contact, and Chronic Defeat stress 68

    Stress, Recovery, and Maintenance: Insights on Adaptive and Maladaptive Effects of Stress 69

    Molecular Mechanisms of Stress-Induced Negative and Positive Energy Balance 70

    Serotonin (5-hydroxytryptamine, 5HT) 71

    Orexin 71

    Neuropeptide Y (NPY) 72

    Ghrelin and Growth Hormone Secretagogue Receptor (GHSR) 72

    Glucagon like Peptide 1 (GLP1) 73

    Leptin 73

    Amylin 74

    Norepinephrine and β3-Adrenergic Receptor 74

    Conclusion 74

    References 75

    5 Interactions of Experience-Dependent Plasticity and LTP in the Hippocampus During Associative Learning 91
    Agnès Gruart, Noelia Madroñal, María Teresa Jurado-Parras, and José María Delgado-García

    Introduction: Study of Learning and Memory Processes in Alert Behaving Mammals 91

    Changes in Synaptic Strength During Learning and Memory 92

    Classical Conditioning 92

    Instrumental Conditioning 95

    Changes in Synaptic Strength Evoked by Actual Learning can be Modified by Experimentally Evoked Long-term Potentiation 96

    Other Experimental Constraints on the Study of the Physiological Basis of Learning Processes 100

    Factors Modifying Synaptic Strength (Environment, Aging, and Brain Degenerative Diseases) 101

    Different Genetic and Pharmacological Manipulations Able to Modify Synaptic Strength 103

    Functional Relationships Between Experimentally Evoked LTP and Associative Learning Tasks 106

    Future Perspectives 108

    Context and Environmental Constraints 108

    Other Forms of Learning and Memory Processes 109

    Cortical Circuits and Functional States During Associative Learning 109

    References 110

    6 The Genetics of Cognition in Schizophrenia: Combining Mouse and Human Studies 115
    Diego Scheggia and Francesco Papaleo

    Background 115

    Genetics of Schizophrenia 116

    Cognitive (dys)functions in Schizophrenia 117

    Translating Cognitive Symptoms in Animal Models 119

    Executive Control 120

    Performance in Schizophrenia 122

    Animal Models 124

    Working Memory 125

    Performance in Schizophrenia 126

    Animal Models 127

    Control of Attention 128

    Performance in Schizophrenia 130

    Animal Models 130

    Concluding Remarks 131

    References 132

    7 The Biological Basis of Economic Choice 143
    David Freestone and Fuat Balci

    Introduction 143

    Translating from Animals to Humans 144

    Reinforcement Learning in the Brain 145

    Subjective Value 146

    The Midbrain Dopamine System Updates Value 147

    From Stimulus Value to Action Value 150

    Model Based Learning 150

    The Prefrontal Cortex Encodes Value 152

    The Basal Ganglia Selects Actions 153

    Optimal Decisions: Benchmarks for the Analysis of Choice Behavior 155

    The Drift Diffusion Model 157

    Temporal Risk Assessment 158

    Timed-response Inhibition for Reward-rate Maximization 160

    Timed Response Switching 163

    Temporal Bisection 164

    Numerical Risk Assessment 166

    Rodent Version of Balloon Analog Risk Task 167

    Conclusion 167

    Acknowledgments 168

    References 168

    8 Interval-timing Protocols and Their Relevancy to the Study of Temporal Cognition and Neurobehavioral Genetics 179
    Bin Yin, Nicholas A. Lusk, and Warren H. Meck

    Introduction 179

    Application of a Timing, Immersive Memory, and Emotional Regulation (Timer) Test Battery 190

    Neural Basis of Interval Timing 191

    What Makes a Mutant Mouse “Tick”? 193

    Proposal of a TIMER Test Battery and Its Application in Reverse Genetics 199

    Behavioral Test Battery Applications in Forward Genetics 202

    Order of Behavioral Tasks 205

    Location and Time of Behavioral Testing 205

    Summary 205

    References 206

    Appendix I 226

    Limitations of the individual-trials analysis for data obtained in the peak-interval (PI) procedure 226

    9 Toolkits for Cognition: From Core Knowledge to Genes 229
    Giorgio Vallortigara and Orsola Rosa Salva

    Introduction 229

    Core Knowledge: The Domestic Chick as a System Model 230

    Numerical Competence 230

    Physical Properties 230

    Geometry of Space 232

    Animate Agents 232

    A Comparative Perspective on the Genetic and Evolutionary Bases of Social Behavior 236

    From Social Experience to Genes 239

    From Genes to Social Behavior 241

    Future Directions 243

    Conserved Mechanisms for Social Core Knowledge 243

    Interactions Between Experience and Genomic Information 243

    Neurogenetic Basis of Social Predispositions 243

    Epigenetics and the Development of the Social Brain 244

    Spatial Cognition, Another Promising Core-knowledge Domain 244

    References 245

    10 Quantitative Genetics of Behavioral Phenotypes 253
    Elzbieta Kostrzewa and Martien J.H. Kas

    Human Studies of Quantitative Traits 253

    Mouse Studies of Quantitative Traits 254

    Classical Inbred Mice 254

    Quantitative Trait Loci (QTL) Analysis 254

    Knock-out (KO) Mouse Lines 256

    Use of Mice as Animal Model for Complex Human Traits 257

    Comparative Genomic Approaches 257

    Evolutionarily Conserved Behavioral Phenotypes 257

    Physical Activity – Definitions and Methods of Phenotypic Measurement 258

    Current Results of Quantitative Genetic Basis of PA in Humans 259

    Current Results of Quantitative Genetic Basis of PA in Mice 260

    KO Studies 260

    QTL Studies 261

    An Overlap of Genetic Findings Between the Species 261

    Conclusions 265

    References 265

    11 Behavioral Phenotyping in Genetic Mouse Models of Autism Spectrum Disorders: A Translational Outlook 271
    Maria Luisa Scattoni, Caterina Michetti, Angela Caruso, and Laura Ricceri

    Introduction 271

    Measuring Social behavior in ASD Mouse Models 272

    Social Interaction Tests 272

    Male-female 277

    Female-female 278

    Male-male 278

    Social-approach 279

    Sociability Test Phase 280

    Social Novelty 280

    Social Recognition 280

    Repetitive Behavior 281

    Motor Stereotypies 281

    Restricted Interests 281

    Behavioral Inflexibility 282

    Behavioral Tests Targeting other ASD Symptoms 282

    Anxiety 282

    Epilepsy 283

    Behavioral Phenotyping in ASD Mouse Pups 283

    Future Directions: ASD Mouse Models as a Resource for Gene-environment Interaction Studies 284

    Acknowledgments 285

    References 285

    12 Genetics of Human Sleep and Sleep Disorders 295
    Birgitte Rahbek Kornum

    The Mystery of Human Sleep 295

    Sleep is Essential for Mammalian Life 295

    The Function of Sleep 296

    Extended Wakefulness Induces Sleep 296

    Homeostatic and Circadian Regulation of Sleep and Wake 297

    Adenosine and Sleep Homeostasis 298

    Resistance to Sleep Loss is a Stable Phenotype 299

    Genetic Markers of Response to Sleep Loss 299

    A Unique Activity Pattern Characterizes the Sleeping Brain 300

    Sleep Stages and Sleep Cycles 300

    Genetics of the Human Sleep Electroencephalography 301

    Normal Sleep Architecture is Lost in Fatal Familial Insomnia 303

    Circadian Regulation of Sleep and Associated Disorders 304

    Circadian Regulation of Sleep 304

    Molecular Regulation of the Circadian Clock 305

    The Central Circadian Clock is Entrained By Light 306

    Circadian Rhythm Sleep Disorders 307

    Advanced Sleep Phase Syndromes 307

    Delayed Sleep Phase Syndromes 308

    Short Sleep Times in Healthy Individuals 308

    Destabilization of Sleep States and Narcolepsy 309

    Normal Regulation of Sleep Architecture 309

    Wakefulness is Associated with Cortical Activation 309

    The Preoptic Area Contains Sleep-promoting Neurons 309

    Mutual Inhibition Regulates Transitions Between Wake and Sleep 310

    Regulation of REM Sleep 311

    Narcolepsy, A Disorder of Wakefulness and REM Sleep 311

    Narcolepsy with Cataplexy is Caused By Hypocretin Deficiency 312

    Autoimmunity Toward Hypocretin Neurons 312

    Genetic Evidence Supports the Autoimmune Hypothesis of Narcolepsy 313

    Restless Legs Syndrome, A Developmental Sleep Disorder 314

    Restless Legs Syndrome, A Mysterious Urge to Move 314

    Restless Legs Syndrome and Dopamine Disturbances 315

    Iron Deficiency Exacerbates RLS Symptoms 315

    Genetic Studies Suggest Developmental Defects 316

    Unresolved Issues and Future Perspectives 316

    What is the Molecular and Neuroanatomical Basis for the Ultradian Rhythm of NREM-REM Sleep? 317

    What is the Genetic Basis for Individual Variation in Complex Sleep Features such as Sleep Spindles and K-Complexes? 317

    What is the Basis for the Individual Differences in Resistance to Sleep Loss? 317

    Are Homeostatic and Circadian Mechanisms Genuinely Independent or Are They Intimately Linked? 318

    What Controls the Molecular and Anatomical Diversity of Sleep Regulatory Networks Across Species? 318

    References 319

    13 The Endocannabinoid System in the Control of Behavior 323
    Edgar Soria-Gomez, Mathilde Metna, Luigi Bellocchio, Arnau Busquets-Garcia, and Giovanni Marsicano

    Introduction 323

    Cannabinoid Effects and Endocannabinoid Functions 324

    Role of the ECS in Memory Processes 325

    Memory: General Background 325

    Role of the ECS in Synaptic Plasticity 325

    Memory Impairment Produced by Exogenous Cannabinoids 326

    Cannabinoid Regulation of Memory: Neurobiological Mechanisms 327

    Role of the ECS in Fear Processes 329

    Fear: General Background 329

    The ECS as an Endogenous Regulator of Fear Responses 331

    Cannabinoid Regulation of Fear: Neurobiological Mechanisms 332

    Implication of the ECS in Fear Coping Behaviors 333

    Role of the ECS in Feeding Behavior 336

    Feeding Behavior: General Background 336

    The ECS as an Endogenous Regulator of Feeding Behavior 337

    The ECS and Food Reward Circuits 338

    The ECS in the Hypothalamic Appetite Network 338

    The ECS in the Caudal Brainstem and Gastrointestinal Tract 340

    Bimodal Control of Stimulated Food Intake by the ECS in the Brain 341

    Paraventricular Hypothalamus Versus Ventral Striatum in Hypophagia induced by the ECS 342

    The Olfactory Bulb and the Hyperphagic Action of the ECS 342

    Conclusions 343

    References 344

    14 Epigenetics in Brain Development and Disease 357
    Elisabeth J. Radford, Anne C. Ferguson-Smith, and Sacri R. Ferrón

    Introduction 357

    Epigenetics and Neurodevelopment 358

    Histone Modifications 358

    DNA Methylation 361

    Hydroxymethylation 364

    Genomic Imprinting 364

    Non-coding RNAs 365

    Neurodevelopmental Disorders with an Epigenetic Basis 366

    Rett Syndrome 366

    Coffin–Lowry Syndrome 367

    Rubinstein–Taybi Syndrome 367

    Alpha-thalassemia Mental Retardation Syndrome 367

    Imprinted Neurodevelopmental Disorders 368

    Trinucleotide Repeat Disorders 368

    Fragile X Syndrome 370

    Friedreich’s Ataxia 370

    Myotonic Dystrophy 371

    Huntington’s Disease (HD) 371

    Epigenetics of Neurodegenerative Disorders 372

    Parkinson´s Disease (PD) 372

    Alzheimer´s Disease (AD) 373

    The Impact of the Environment on the Epigenome 374

    Epigenetic Therapy in Neurodevelopment 375

    Untargeted Treatment 375

    Targeted Epigenetic Modulation 377

    Concluding Remarks 377

    Acknowledgments 377

    References 378

    15 Impact of Postnatal Manipulations on Offspring Development in Rodents 395
    Diego Oddi, Alessandra Luchetti, and Francesca Romana D’Amato

    Introduction 395

    Early Postnatal Environment in Laboratory Altricial Rodents 396

    Rodents’ Responses to Postnatal Environment and Early Manipulations 397

    Assessing Pups’ Responses to Postnatal Environment and Early Manipulation 397

    Neonatal Ultrasonic Calls: Isolation-induced Vocalizations and Maternal Potentiation 397

    Searching for Social Contact: Homing and Huddling Behaviors 398

    Early-life Environment and Stress-Response 398

    Separation from the Mother 399

    Mother’s Stress 400

    The Cross-fostering Paradigm 401

    Repeated Cross-fostering as a Model of Early Maternal Environment Instability 403

    Environmental Enrichment 405

    Conclusions 406

    References 407

    16 Exploring the Roles of Genetics and the Epigenetic Mechanism DNA Methylation in Honey Bee (Apis Mellifera) Behavior 417
    Christina M. Burden and Jonathan E. Bobek

    Introduction 417

    Genetics of Adult Honey Bee Biology and Behavior 418

    Nurse to Forager Transition 418

    Forager Preference 420

    Techniques for Investigating the Genetic Bases of Behavior 420

    QTL Mapping 421

    RNA Techniques 421

    Microarrays 421

    RNA Sequencing 422

    Experimentally Modulating the Genes Correlated with Specific Behaviors to Test Causality 422

    DNA Methylation and Honey Bee Behavior 423

    Honey Bee DNA Methylation Machinery and Genome-Wide Patterns 423

    DNA Methylation and Task Specialization 424

    DNA Methylation and Memory Consolidation 425

    Techniques for Detecting and Assaying DNA Methylation 426

    The Technological Bases for Most DNA Methylation Assays 426

    Methylation-specific Restriction Endonucleases 426

    Protein-mediated Precipitation of Methylated DNA 428

    Bisulfite Conversion 428

    Assaying Single CpGs, Short Sequences, and Target Regions 429

    Analyzing Genome-wide DNA Methylation Patterns: Microarray-based Methodologies 431

    Analyzing Genome-wide DNA Methylation Patterns: Sequencing-based Methodologies 432

    Techniques for Manipulating DNA Methylation 434

    Pharmacological Manipulation of DNA Methylation 434

    RNA Interference as a DNMT Blockade 434

    Concluding Remarks and Future Perspectives 435

    References 436

    17 Genetics and Neuroepigenetics of Sleep 443
    Glenda Lassi and Federico Tinarelli

    Defining Sleep 443

    Sleep is Genetically Determined 445

    EEG and Heritable Traits 445

    Sleep Disorders and Genes 446

    Sleep and Gene Expression 447

    Epigenetics 448

    DNA Methylation 450

    Posttranslational Modifications (PTMs) 450

    RNA interference 452

    Neuroepigenetics 453

    Two Neurodevelopmental Disorders with Opposing Imprinting Profiles and Opposing Sleep Phenotypes 453

    Neuroepigenetics of Sleep 454

    Fruit Fly 454

    Rodent Models 454

    Human Beings 456

    Sleep and Parent-of-origin Effects 458

    Conclusions 460

    References 460

    18 Behavioral Phenotyping Using Optogenetic Technology 469
    Stephen Glasgow, Carolina Gutierrez Herrera, and Antoine Adamantidis

    Introduction 469

    Microbial Opsins 470

    Fast Excitation Using Channelrhodopsin-2 and Its Variants 470

    Fast Optical Silencing 474

    Alternative strategies for cell-type specific modulation of neural activity 476

    Targeting systems 476

    Light Delivery in the Animal Brain 478

    Recording Light-evoked Neuronal Activity 479

    Behavioral Phenotyping 479

    In-vivo Optogenetics: Defining Circuits 480

    Perspectives 484

    Acknowledgments 484

    References 484

    19 Phenotyping Sleep: Beyond EEG 489
    Sibah Hasan, Russell G. Foster, and Stuart N. Peirson

    Sleep Research 489

    Phenotyping Sleep in Humans 490

    Introduction 490

    Actigraphy 490

    Cardiorespiratory Signals 491

    EEG 492

    Phenotyping Sleep in Animal Models 494

    Introduction 494

    EEG 494

    Introduction 494

    Tethered EEG 496

    Telemetered EEG 496

    NeuroLogger EEG 498

    Beyond EEG 498

    Infrared Beam Break 499

    Movement Based on Implanted Magnets 499

    Piezo-electric Sensors 499

    Video Tracking 500

    Future Perspectives 501

    Acknowledgements 502

    References 502

    20 A Cognitive Neurogenetics Screening System with a Data-Analysis Toolbox 507
    C.R. Gallistel, Fuat Balci, David Freestone, Aaron Kheifets, and Adam King

    Introduction 507

    Mechanisms, Not Procedures 508

    Functional Specificity 508

    No Group Averages 509

    Physiologically Meaningful Measures 509

    Importance of Large-scale Screening and Minimal Handling 511

    Utilizable Archived Data with Intact Data Trails 511

    The System 512

    The Toolbox 513

    Core Commands 516

    Powerful Graphics Commands 517

    Results 518

    Summary 523

    References 524

    21 Mapping the Connectional Architecture of the Rodent Brain with fMRI 527
    Adam J. Schwarz and Alessandro Gozzi

    Introduction 527

    MRI Mapping of Functional Connectivity in the Rodent Brain 528

    Networks of Functional Covariance 528

    Connectivity of Neurotransmitter Systems 529

    The Dopaminergic System 529

    The Serotonergic System 531

    Resting State BOLD fMRI 532

    Connectivity Networks of the Rodent Brain 533

    Do Rodent Brains have a Default Mode Network? 536

    Use of Anesthesia and Other Methodological Considerations 539

    Transgenic Models: Genetic Manipulation of Functional Connectivity Patterns 541

    Future Perspectives 543

    References 545

    22 Cutting Edge Approaches for the Identification and the Functional Investigation of miRNAs in Brain Science 553
    Emanuela de Luca, Federica Marinaro, Francesco Niola, and Davide De Pietri Tonelli

    Introduction 553

    History 553

    Biology and Functions in the Brain 553

    Identification of Novel MicroRNAs in the Brain 555

    miRNA Extraction and Purification 556

    miRNA Cloning 556

    Computational Identification of Novel miRNAs 557

    RNA Sequencing (RNA-Seq) 558

    miRNA expression analysis in the brain 559

    miRNA profiling 559

    Analysis of miRNA Expression in Tissue 559

    Target Identification 560

    Computational Identification of Targets 561

    Proteomics 561

    RISC-associated miRNA Targets 562

    RNomics 563

    miRNA Manipulation/Target Validation 565

    miRNA Inhibition 565

    miRNA Over-expression 566

    Target Validation 567

    New Frontiers in Small RNA-based Technologies to Cure Nervous System Deficits 567

    Use of miRNAs in Gene Therapy 567

    Use of miRNAs in Gene Therapy in the Brain Requires Improved Delivery Strategies 571

    Conclusion and Perspectives 572

    Are Circulating miRNAs Novel Biomarkers for Brain Diseases? 572

    Use of miRNAs in Cell Reprogramming Technology 573

    Are miRNAs Just the “Tip of the Iceberg”? Emerging Classes of Noncoding RNAs and Novel Scenarios 574

    Acknowledgments 575

    Competing Financial Interests 575

    References 575

    Index 585



    기타 신간의학서적과 의학도서에 관련된 문의사항은 고객센터(02-854-2738) 또는 저희 성보의학서적 홈페이지내 도서문의 게시판에 문의바랍니다.
    감사합니다.
    성보의학서적 "http://www.medcore.kr

    상품결제정보


    배송정보

    • 배송 방법 : 택배
    • 배송 지역 : 전국지역
    • 배송 비용 : 2,500원
    • 배송 기간 : 3일 ~ 5일
    • 배송 안내 :


    • 고객님께서 저희 성보의학서적에서 주문을 하신 주문번호가 생성이 되면 그에 따른 발송준비 및 배송절차는 다음과 같습니다

      - 일반적으로 배송기간은 입금확인일로부터 3일 이내 배송을 원칙으로 합니다. 이는 재고가 확보된 도서의 경우입니다.
      (단, 산간이나 지방 및 도서지역의 경우 약 1~2일이 더 소요될 수 있습니다.)
      - 배송의 시점은 고객님의 주문 이후 입금확인 과정을 거쳐 배송이 됩니다.
      - 주문도서의 배송 시 휴일이 포함된 경우는 24시간 순연됩니다.
      - 배송료는 회원주문, 비회원주문 모두 2,500원 입니다. (일부 도서 및 산간지역은 추가 배송비 발생)
      - 주문 금액이 30,000원 이상일 경우에는 무료로 배송해 드립니다.
      - 반품/취소.환불 시 배송비는 무료로 배송이 되었을 경우, 처음 발생한 배송비까지 소급 적용될 수 있으며,
      상품 하자로 인한 도서 교환시에는 무료로 가능합니다.
      - 성보의학서적의 기본배송방법으로 택배서비스(한진택배&우체국)를 이용합니다.


      해외원서의 경우
      - 국내에서 재고를 보유한 업체가 없는 경우 해외주문을 해야 하는 상황이 생깁니다.
      이 경우 4~5주 안에 공급이 가능하며 현지 출판사 사정에 따라 구입이 어려운 경우 2~3주 안에 공지해 드립니다.
      - 재고 유무는 주문 전 사이트 상에서 배송 안내 문구로 구분 가능하며, 필요에 따라 전화 문의 주시면 거래처를 통해
      다시 한번 국내재고를 확인해 드립니다.

      - 해외 주문 도서는 고객님의 요청에 의해 주문하는 '개인주문' 상품으로, 단순한 고객변심/착오로 인한 취소, 교환, 반품은 불가능합니다.
      - 해외주문 시 도서가격 및 수입 제반 비용 등을 모두 선결제로 진행하고 재고 관련 등의 사유로 취소, 교환, 반품이 불가능하오니
      이점 꼭 숙지하시고 해외주문시 신중하게 주문하여 주시기 바랍니다.

    교환 및 반품정보

    반품안내
    전자상거래에 의한 소비자보호에 관한 법률에 의거 반품 가능 기간내에는 반품을 요청하실 수 있습니다.

    반품가능기간
    - 단순변심 : 물품 수령 후 14일 이내 (단, 고객님의 요청으로 주문된 해외원서 제외)


    - 주문하신 것과 다른 상품을 받으신 경우

    - 파본인 상품을 받으신 경우
    - 배송과정에서 손상된 상품을 받으신 경우



    - 개봉된 DVD, CD-ROM, 카세트테이프 (단, 배송 중 파손된 상품 제외)

    - 탐독의 흔적이 있는 경우
    - 소비자의 실수로 상품이 훼손된 경우
    - 고객님의 주문으로 수입된 해외 도서인 경우
    - 수령일로 14일 지난 상품의 경우

    - 해외 주문 도서는 고객님의 요청에 의해 주문하는 '개인주문' 상품으로, 단순한 고객변심/착오로 인한 취소, 교환, 반품은 불가능합니다.
    - 해외주문 시 도서가격 및 수입 제반 비용 등을 모두 선결제로 진행하고 재고 관련 등의 사유로 취소, 교환, 반품이 불가능하오니
      이점 꼭 숙지하시고 해외주문시 신중하게 주문하여 주시기 바랍니다.


    반품절차
    - 배송완료후 3일 이내에 고객센터 02-854-2738 혹은 1:1 문의게시판을 통해 교환 및 반품 의사를 알려주세요.
    - 도서는 택배 또는 등기우편으로 보내주시기 바랍니다.
    - 14일 이내에 교환/반품/환불 받으실 상품이 회수되어야 하며, 반품과 환불의 경우 상품주문시 면제받으셨던
      배송비와 반품배송비까지 고객님께서 부담하시게 됩니다.

    반품주소
    (10881) 서울시 구로구 구로중앙로26길 32(구로동) 1층(성보의학서적)
    전화) 02-854-2738

    환불방법
    - 대금은 반품 확인 후에, 카드취소/ 적립금 지급/ 계좌로 환불조치 해 드립니다.
    - 카드결제 시 카드 승인취소절차를 밟게 되며 무통장입금시 현금 환불 혹은 적립금으로 변환 가능합니다.
    - 반품도서와 함께 도서명, 주문번호와 환불계좌번호를 알려주시면 빠른 처리 가능합니다.



    서비스문의


    고객센터: (02)854-2738

    상품사용후기

    상품의 사용후기를 적어주세요.

    게시물이 없습니다

    상품문의하기 모두 보기

    상품 Q&A

    상품에 대해 궁금한 점을 해결해 드립니다.

    게시물이 없습니다

    상품문의하기 모두 보기

  • sbbn09036  


  • 장바구니 0

    맨위로

    마이쇼핑 게시판 배송조회 blog